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Harmonic maps

Definition
The energy functional of φ : (M,g)→ (N,h) is

E (φ) =
1
2

∫
M
| dφ |2 vg .

Critical points of E = harmonic maps.
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Harmonic maps

First variation

δE(φt ) = −〈τ(φ),V 〉,

with V = δφt .
Euler-Lagrange equation associated to E :
τ(φ) = traceg∇dφ = 0.
Conformal invariance if dim M = 2.
Generalise harmonic functions, geodesics, totally geodesic
maps, holomorphic maps (between Kähler manifolds),
minimal submanifolds.
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Harmonic maps

Eells-Sampson Theorem (1964)

If M is compact and RiemN ≤ 0 then there exists a
harmonic representative in each homotopy class.
Geometric flow method, importance of curvature.
Non-existence of harmonic degree one maps from T2 to S2

(∀ metrics).
Hopf map S3 in S2.
Holomorphic maps from S2 in S2.
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Harmonic maps

Vector fields
Vector fields seen as maps from M to TM (manifold with
dim = 2dim M).
σ : M → TM and dσ : TM → TTM.
TTM = H ⊕ V where
V = ker dπ for π : TM → M canonical projection and
H = ker K with K = d(exp ◦R−u ◦ τ).
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Harmonic maps

Bitangent bundle
∀(x ,e) ∈ TM, V(x ,e) and H(x ,e) are isomorphic to TxM.
If (x ,e) ∈ TM, then vectors of T(x ,e)TM can be written as
X h + Y v where X ,Y ∈ TxM.
Sasaki metric on TM :

G(X h,Y h) = g(X ,Y ),

G(X h,Y v ) = 0,

G(X v ,Y v ) = g(X ,Y )

G Riemannian metric on TM, connection, curvature, etc...
Sasaki rather rigid.
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Harmonic maps

Vector fields
Two variational problems for σ :
i) critical points among vector fields→ harmonic sections
⇔ vertical part of τ(σ) = 0.
ii) critical points among all maps from M to TM →
harmonic maps⇔ τ(σ) = 0.
Tension fields

τ(σ) = (∇∗∇σ)v + (R(σ,∇eiσ)ei)
h

If M compact, harmonic section or map⇒ parallel.
Dead-end.
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Harmonic maps

Vector fields : alternatives

i) Unit sections, i.e. of T 1M.
ii) other metrics than Sasaki, then discussion.
iii) other functional (volume, biharmonic).
iv) other bundle X
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Homogeneous fibre bundles

Homogeneous fibre bundles (CMW)
Let G be a Lie group, ξ : Q → M a G-principal fibre bundle.
Let H ⊂ G a Lie sub-group and N = Q/H then ζ : Q → N
is an H-principal sub-bundle.
Then ξ = π ◦ ζ where π : N → M is fibre bundle with fibre
G/H, isomorphic to Q ×G G/H.
Assume G/H is reductive, i.e. g = h⊕m and
AdG(H)m ⊂ m.
M is equipped with a Riemannian metric g, G/H with
G-invariant metric and Q with a g-valued connection ω.
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Homogeneous fibre bundles

Homogeneous fibre bundles
Then TN = V ⊕H,
V = ker dπ = ζ∗(ker ξ∗) and H = ζ∗(kerω∗).
Trivialisation of V with the canonical fibre bundle mQ → N,
associated to ζ : Q → N ⇒ I : V → mQ.
Connector φ(ζ∗E) = q • ωm(E) ∈ mQ for all E ∈ TqQ.
Therefore metric h on N defined by h = π∗g + 〈φ, φ〉.
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Homogeneous fibre bundles

Reduction
Take a group reduction of ξ : Q → M.
i.e. an H-principal sub-bundle ξ′ : Q′ → M of Q.
The submanifold ζ(Q′) ⊂ N is transverse to the fibres of
π : N → M, i.e. T ζ(Q′) ⊂ H.
Hence ζ(Q′) associates to any x ∈ M a unique element of
N, i.e. it defines a section of π : N → M.
and vice-versa, Q′ = ζ−1(σ(M)).
The reduction Q′ ⊂ Q will be called harmonic if σ : M → N
is harmonic (as section or map).
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Complex structures

Example : almost hermitian structures
Q is the fibre bundle of unitary frames, G = O(n) and
H = SU(k) (n = 2k ).
h is the algebra of skew-symmetric matrices commuting

with J0 =

(
Ok −Ik
Ik Ok

)
m is the set of skew-symmetric matrices anti-commuting
with J0.
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Complex structures

The universal complex structure
On π∗TM universal complex structure J defined for y ∈ N
by
J (y) is the automorphism of Tπ(y)M whose matrix, in any
frame of ζ−1(y), is given by J0.
gQ is the fibre bundle of skew-symmetric endomorphisms
of TM.
The fibres de hQ (mQ) above y ∈ N are skew-symmetric
endomorphisms of Tπ(y)M which commute (anti-commute)
with J (y).
An element β of gQ decomposes into

1
2
J [β,J ]− 1

2
J {β,J }
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Complex structures

Harmonicity of almost hermitian structures
If σ is a section of π : N → M then J = σ∗J is an almost
complex structure.
Functional

E(σ) =
dim M

2
+

1
2

∫
M

1
4
|∇J|2 vg .

and I(τ vσ) = 1
4 [∇∗∇J, J].

So J is a harmonic section iff ∇∗∇J and J commute.
J is a harmonic map if, moreover, it satisfies

g
(
[R(Ei ,Z ), J],∇Ei J

)
= 0, ∀Z
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Complex structures

Examples harmonic structures
If J is nearly-Kähler, i.e. ∇X J(X ) = 0, then J is a harmonic
map.
If J is (1,2)-symplectic, i.e. ∇J(JX , JY ) = −∇J(X ,Y ),
then J is a harmonic section iff Ricci∗ is symmetric.
Ricci∗(X ,Y ) = 〈R(X ,Ei)JEi ,Y 〉.
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Almost contact structures

Definition
An almost contact structure on a Riemannian manifold
(M,g) is the data :
A unit vector field ξ and a tensor (1,1) θ such that :

θ2 = − Id +η ⊗ ξ

with η(X ) = g(ξ,X ).
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Almost contact structures

Examples

Almost complex manifolds ×S1.
Hypersurfaces of an almost complex manifold.
S5 ⊂ S6 where S6 is the unit sphere of imaginary Cayley
numbers with its vector product u × v .
JS6

(X ) = N × X is nearly-Kähler.

S5 (x7 = 0) equipped with ξ = −JS6
( ∂
∂x7 ) and

φ(X ) = JS6
(X ) + η(X ) ∂

∂x7 , is almost contact.
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Almost contact structures

The angle of reduction
Frame bundle, G = SO(m)

Reduction to the group H = U(n)× 1⇒ m = 2n + 1

Matrix φ0 =

On −In 0
Ik Ok 0
0 · · · 0


H = {A ∈ G : Aφ0A−1 = φ0} and h = {a ∈ g : [a, φ0] = 0}.
But m = m1 ⊕m2

m1 = {a ∈ g : {a, φ0} = 0} and
m2 = {a ∈ g : {a, η0 ⊗ ξ0} = 0}, ξ0 = (0, · · · ,0,1) ∈ Rm, η0
its dual.
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The angle of reduction
g = h⊕m1 ⊕m2, Ad(H)-invariant.
ah = −1

2(φ0{a, φ0}+ a ◦ (η0 ⊗ ξ0)),
am1 = 1

2(φ0[a, φ0]− a ◦ (η0 ⊗ ξ0)), am2 = {a, η0 ⊗ ξ0}
m1 and m2 ⇒ two equations for harmonic sections.
Universal almost contact structure.
Pull-back by σ : M → N.
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Harmonicity equations
First harmonic sections equation :

[∇̄∗∇̄J, J] = 0

Second harmonic sections equation :

∇∗∇ξ = |∇ξ|2 − 1
2

J ◦ trace(∇̄J ⊗ ξ)

Harmonic maps equation :

〈∇̄Ei J, [R̄(Ei ,X ), J]〉+ 8〈∇Ei ξ,R(Ei ,X )ξ〉 = 0 ∀X ∈ TM.
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Energy functional

E(σ) =
dim M

2
+

1
2

∫
M

1
4
|∇̄J|2 + |∇ξ|2 vg .
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Almost contact structures

Examples of harmonic structures
Hypersurface of a Kähler manifold, harmonic structure iff ξ
harmonic unit vector field.
S2n+1 ⊂ Cn+1 with Hopf vector field is harmonic, as section
and as map.
Sasaki manifold (Kählerian cone) has a harmonic
structure, as section and as map.
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Almost contact structures

Nearly cosymplectic structures
Definition : (∇Xθ)(Y ) is anti-symmetric in X and Y .
Then ξ is a Killing field with geodesic integral curves
(∇ξξ = 0).
Example S5 in S6.
If nearly cosymplectic structure then
harmonic section
harmonic map.
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Nearly cosymplectic structures : method for section
1 : re-writing of harmonicity equations

[∇̄∗∇̄J, J] = 0

and
∇∗∇ξ = |∇ξ|2ξ − 1

2
J ◦ trace(∇̄J ⊗ ξ)

in terms of curvature.
The first harmonic section equation is equivalent to :
Ricci∗(X ,Y ) = Ricci∗(θX , θY )

The second harmonic section equation becomes
∇∗∇ξ − |∇ξ|2ξ = −1

2 [R(Fi , θFi), θ]ξ
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Almost contact structures

Nearly cosymplectic structures : method for section
2 : second covariant derivative

θ2 = − Id +η ⊗ ξ

to obtain expressions of curvature.
−R(X ,Y ,X ,Y ) + R(X ,Y , θX , θY ) =
|(∇Xθ)(Y )|2 + g2(Y ,∇X ξ)

R(W ,X ,Y ,Z )− R(θW , θX , θY , θZ ) = ...



Harmonic maps Homogeneous fibre bundles Almost contact structures

Almost contact structures

Nearly cosymplectic structures : method for section
2 : second covariant derivative

θ2 = − Id +η ⊗ ξ

to obtain expressions of curvature.
−R(X ,Y ,X ,Y ) + R(X ,Y , θX , θY ) =
|(∇Xθ)(Y )|2 + g2(Y ,∇X ξ)

R(W ,X ,Y ,Z )− R(θW , θX , θY , θZ ) = ...



Harmonic maps Homogeneous fibre bundles Almost contact structures

Almost contact structures

Nearly cosymplectic structures : method for section
2 : second covariant derivative

θ2 = − Id +η ⊗ ξ

to obtain expressions of curvature.
−R(X ,Y ,X ,Y ) + R(X ,Y , θX , θY ) =
|(∇Xθ)(Y )|2 + g2(Y ,∇X ξ)

R(W ,X ,Y ,Z )− R(θW , θX , θY , θZ ) = ...



Harmonic maps Homogeneous fibre bundles Almost contact structures

Almost contact structures

Nearly cosymplectic structures : method for section
2 : second covariant derivative

θ2 = − Id +η ⊗ ξ

to obtain expressions of curvature.
−R(X ,Y ,X ,Y ) + R(X ,Y , θX , θY ) =
|(∇Xθ)(Y )|2 + g2(Y ,∇X ξ)

R(W ,X ,Y ,Z )− R(θW , θX , θY , θZ ) = ...



Harmonic maps Homogeneous fibre bundles Almost contact structures

Almost contact structures

Nearly cosymplectic structures : method for section
2 : second covariant derivative

θ2 = − Id +η ⊗ ξ

to obtain expressions of curvature.
−R(X ,Y ,X ,Y ) + R(X ,Y , θX , θY ) =
|(∇Xθ)(Y )|2 + g2(Y ,∇X ξ)

R(W ,X ,Y ,Z )− R(θW , θX , θY , θZ ) = ...



Harmonic maps Homogeneous fibre bundles Almost contact structures

Almost contact structures

Nearly cosymplectic structures : method for section
3 : combining of the two :
The first harmonic section equation is always satisfied.
The vector field ξ is harmonic and RF (Fi , θFi)ξ = 0
hence the second harmonic section equation is also
satisfied.
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Nearly cosymplectic structures : maps
Same method for

〈∇̄Ei J, [R̄(Ei ,X ), J]〉+ 8〈∇Ei ξ,R(Ei ,X )ξ〉 = 0 ∀X ∈ TM.

Establish that

R(Y ,X ,W ,Z )− R(Y ,X , θW , θZ ) =

−g((∇W θ)(Z ), (∇Y θ)(X )) + g(Y ,∇X ξ)g(Z ,∇W ξ)
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Almost contact structures

Nearly cosymplectic structures : maps
implies ∀X ∈ F

〈∇̄Ei J, [R̄(Ei ,X ), J]〉 = 0

and in the direction of ξ

〈∇̄Ei J, [R̄(Ei , ξ), J]〉 = 0

Finally for any vector in TM

〈∇Ei ξ,R(Ei ,X )ξ〉 = 0

so σ is a harmonic map.
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