◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Harmonicity of nearly cosymplectic structures

E. Loubeau (collab. E. Vergara)

Université de Bretagne Occidentale, France

Mulhouse, June 2016

Definition

• The energy functional of $\phi : (M, g) \rightarrow (N, h)$ is

$$E\left(\phi
ight)=rac{1}{2}\int_{M}\mid d\phi\mid^{2}v_{g}.$$

Critical points of E = harmonic maps

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Definition

• The energy functional of $\phi : (M, g) \rightarrow (N, h)$ is

$$E(\phi) = \frac{1}{2} \int_M |d\phi|^2 v_g.$$

Critical points of E = harmonic maps.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Harmonic maps

Definition

• The energy functional of $\phi : (M, g) \rightarrow (N, h)$ is

$$E(\phi)=rac{1}{2}\int_M\mid d\phi\mid^2 v_g.$$

Critical points of E = harmonic maps.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Harmonic maps

Definition

• The energy functional of $\phi : (M, g) \rightarrow (N, h)$ is

$$E(\phi) = rac{1}{2}\int_M |d\phi|^2 v_g.$$

• Critical points of E = harmonic maps.

First variation

$\delta E(\phi_t) = -\langle \tau(\phi), V \rangle,$

- Euler-Lagrange equation associated to E: $\tau(\phi) = trace_{g} \nabla d\phi = 0.$
- Conformal invariance if dim M = 2.
- Generalise harmonic functions, geodesics, totally geodesic maps, holomorphic maps (between Kähler manifolds), minimal automanifolds.

First variation

$$\delta E(\phi_t) = -\langle \tau(\phi), V \rangle,$$

- Euler-Lagrange equation associated to E: $\tau(\phi) = \text{trace}_q \nabla d\phi = 0.$
- Conformal invariance if dim M = 2.
- Generalise harmonic functions, geodesics, totally geodesic maps, holomorphic maps (between Kähler manifolds), minimal submanifolds.

First variation

٩

$$\delta \boldsymbol{E}(\phi_t) = -\langle \tau(\phi), \boldsymbol{V} \rangle,$$

- Euler-Lagrange equation associated to E: $\tau(\phi) = \text{trace}_q \nabla d\phi = 0.$
- Conformal invariance if dim M = 2.
- Generalise harmonic functions, geodesics, totally geodesic maps, holomorphic maps (between Kähler manifolds), minimal submanifolds.

First variation

٥

$\delta \boldsymbol{E}(\phi_t) = -\langle \tau(\phi), \boldsymbol{V} \rangle,$

- Euler-Lagrange equation associated to E: $\tau(\phi) = \text{trace}_g \nabla d\phi = 0.$
- Conformal invariance if dim M = 2.
- Generalise harmonic functions, geodesics, totally geodesic maps, holomorphic maps (between Kähler manifolds), minimal submanifolds.

First variation

٥

$\delta \boldsymbol{E}(\phi_t) = -\langle \tau(\phi), \boldsymbol{V} \rangle,$

- Euler-Lagrange equation associated to E: $\tau(\phi) = \text{trace}_{g} \nabla d\phi = 0.$
- Conformal invariance if dim M = 2.
- Generalise harmonic functions, geodesics, totally geodesic maps, holomorphic maps (between Kähler manifolds), minimal submanifolds.

First variation

٥

$\delta \boldsymbol{E}(\phi_t) = -\langle \tau(\phi), \boldsymbol{V} \rangle,$

- Euler-Lagrange equation associated to *E* : $\tau(\phi) = \text{trace}_{a} \nabla d\phi = 0.$
- Conformal invariance if dim M = 2.
- Generalise harmonic functions, geodesics, totally geodesic maps, holomorphic maps (between Kähler manifolds), minimal submanifolds.

・ロン ・雪 と ・ ヨ と ・ ヨ と

ж

Harmonic maps

- If M is compact and Riem^N ≤ 0 then there exists a harmonic representative in each homotopy class.
- Geometric flow method, importance of curvature.
- Statistics of harmonic degree one maps from T² to S².
 (r motios).
- Hopf map S³ in S².
- Holomorphic maps from S² in S².

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Harmonic maps

- If *M* is compact and Riem^N ≤ 0 then there exists a harmonic representative in each homotopy class.
- Geometric flow method, importance of curvature.
- Non-existence of harmonic degree one maps from T² to S² (∀ metrics).
- Hopf map \mathbb{S}^3 in \mathbb{S}^2 .
- Holomorphic maps from \mathbb{S}^2 in \mathbb{S}^2 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Harmonic maps

- If *M* is compact and Riem^N ≤ 0 then there exists a harmonic representative in each homotopy class.
- Geometric flow method, importance of curvature.
- Non-existence of harmonic degree one maps from T² to S² (∀ metrics).
- Hopf map \mathbb{S}^3 in \mathbb{S}^2 .
- Holomorphic maps from S² in S².

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Harmonic maps

- If *M* is compact and Riem^N ≤ 0 then there exists a harmonic representative in each homotopy class.
- Geometric flow method, importance of curvature.
- Non-existence of harmonic degree one maps from T² to S² (∀ metrics).
- Hopf map S³ in S².
- Holomorphic maps from S² in S².

・ロト・日本・山田・山田・山口・

Harmonic maps

- If *M* is compact and Riem^N ≤ 0 then there exists a harmonic representative in each homotopy class.
- Geometric flow method, importance of curvature.
- Non-existence of harmonic degree one maps from T² to S² (∀ metrics).
- Hopf map S³ in S².
- Holomorphic maps from \mathbb{S}^2 in \mathbb{S}^2 .

・ロト・日本・山田・山田・山口・

Harmonic maps

- If *M* is compact and Riem^N ≤ 0 then there exists a harmonic representative in each homotopy class.
- Geometric flow method, importance of curvature.
- Non-existence of harmonic degree one maps from T² to S² (∀ metrics).
- Hopf map S³ in S².
- Holomorphic maps from S² in S².

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Harmonic maps

- If *M* is compact and Riem^N ≤ 0 then there exists a harmonic representative in each homotopy class.
- Geometric flow method, importance of curvature.
- Non-existence of harmonic degree one maps from T² to S² (∀ metrics).
- Hopf map S³ in S².
- Holomorphic maps from \mathbb{S}^2 in \mathbb{S}^2 .

Vector fields

- Vector fields seen as maps from M to TM (manifold with dim = 2dim M).
- \bullet $\sigma: M \rightarrow TM$ and $d\sigma: TM \rightarrow TTM$.
- \circ $TTM = H \oplus V$ where
- $V = \ker d\pi$ for $\pi : TM \to M$ canonical projection and
- $H = \ker K$ with $K = d(\exp \circ R_{-r} \circ r)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vector fields

- Vector fields seen as maps from *M* to *TM* (manifold with dim = 2dim *M*).
- $\sigma : M \to TM$ and $d\sigma : TM \to TTM$.
- $TTM = H \oplus V$ where
- $V = \ker d\pi$ for $\pi : TM \rightarrow M$ canonical projection and
- $H = \ker K$ with $K = d(\exp \circ R_{-u} \circ \tau)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Vector fields

- Vector fields seen as maps from *M* to *TM* (manifold with dim = 2dim *M*).
- $\sigma : M \to TM$ and $d\sigma : TM \to TTM$.
- $TTM = H \oplus V$ where
- $V = \ker d\pi$ for $\pi: TM o M$ canonical projection and
- $H = \ker K$ with $K = d(\exp \circ R_{-u} \circ \tau)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Vector fields

- Vector fields seen as maps from *M* to *TM* (manifold with dim = 2dim *M*).
- $\sigma : M \to TM$ and $d\sigma : TM \to TTM$.
- $TTM = H \oplus V$ where
- $V = \ker d\pi$ for $\pi : TM \to M$ canonical projection and
- $H = \ker K$ with $K = d(\exp \circ R_{-u} \circ \tau)$.

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Vector fields

- Vector fields seen as maps from *M* to *TM* (manifold with dim = 2dim *M*).
- $\sigma : M \rightarrow TM$ and $d\sigma : TM \rightarrow TTM$.
- $TTM = H \oplus V$ where
- $V = \ker d\pi$ for $\pi : TM \to M$ canonical projection and
- $H = \ker K$ with $K = d(\exp \circ R_{-u} \circ \tau)$.

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Harmonic maps

Vector fields

- Vector fields seen as maps from *M* to *TM* (manifold with dim = 2dim *M*).
- $\sigma : M \to TM$ and $d\sigma : TM \to TTM$.
- $TTM = H \oplus V$ where
- $V = \ker d\pi$ for $\pi : TM \to M$ canonical projection and
- $H = \ker K$ with $K = d(\exp \circ R_{-u} \circ \tau)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Harmonic maps

Vector fields

- Vector fields seen as maps from *M* to *TM* (manifold with dim = 2dim *M*).
- $\sigma : M \to TM$ and $d\sigma : TM \to TTM$.
- $TTM = H \oplus V$ where
- $V = \ker d\pi$ for $\pi : TM \to M$ canonical projection and
- $H = \ker K$ with $K = d(\exp \circ R_{-u} \circ \tau)$.

Bitangent bundle

- ∀(x, e) ∈ TM, V_(x,e) and H_(x,e) are isomorphic to T_xM.
 If (x, e) ∈ TM, then vectors of T_(x,e)TM can be written as X^h + Y^e where X, Y ∈ T_xM.
- Sasaki metric on TM ::

$(V, N)_{0} = (V', N)_{0}$ $(V, N)_{0} = (V', N)_{0}$ $(V, N)_{0} = (V', N)_{0}$

Bitangent bundle

- $\forall (x, e) \in TM, V_{(x,e)} \text{ and } H_{(x,e)} \text{ are isomorphic to } T_xM.$
- If $(x, e) \in TM$, then vectors of $T_{(x,e)}TM$ can be written as $X^h + Y^v$ where $X, Y \in T_xM$.
- Sasaki metric on TM :

 $G(X^n, Y^n) = g(X, Y),$ $G(X^h, Y^v) = 0,$ $G(X^v, Y^v) = g(X, Y)$

Bitangent bundle

- $\forall (x, e) \in TM, V_{(x,e)} \text{ and } H_{(x,e)} \text{ are isomorphic to } T_xM.$
- If $(x, e) \in TM$, then vectors of $T_{(x,e)}TM$ can be written as $X^h + Y^v$ where $X, Y \in T_xM$.
- Sasaki metric on TM :

$$G(X^n, Y^n) = g(X, Y),$$
$$G(X^h, Y^v) = 0,$$
$$G(X^v, Y^v) = g(X, Y)$$

Bitangent bundle

- $\forall (x, e) \in TM$, $V_{(x,e)}$ and $H_{(x,e)}$ are isomorphic to T_xM .
- If $(x, e) \in TM$, then vectors of $T_{(x,e)}TM$ can be written as $X^h + Y^v$ where $X, Y \in T_xM$.
- Sasaki metric on TM :

 $G(X^{n}, Y^{n}) = g(X, Y),$ $G(X^{h}, Y^{v}) = 0,$ $G(X^{v}, Y^{v}) = g(X, Y)$

Bitangent bundle

- $\forall (x, e) \in TM$, $V_{(x,e)}$ and $H_{(x,e)}$ are isomorphic to T_xM .
- If $(x, e) \in TM$, then vectors of $T_{(x,e)}TM$ can be written as $X^h + Y^v$ where $X, Y \in T_xM$.
- Sasaki metric on TM :

$$egin{aligned} G(X^h,Y^h) &= g(X,Y), \ G(X^h,Y^v) &= 0, \ G(X^v,Y^v) &= g(X,Y) \end{aligned}$$

Bitangent bundle

- $\forall (x, e) \in TM, V_{(x,e)} \text{ and } H_{(x,e)} \text{ are isomorphic to } T_xM.$
- If $(x, e) \in TM$, then vectors of $T_{(x,e)}TM$ can be written as $X^h + Y^v$ where $X, Y \in T_xM$.
- Sasaki metric on TM :

$$egin{aligned} G(X^h,Y^h) &= g(X,Y), \ G(X^h,Y^v) &= 0, \ G(X^v,Y^v) &= g(X,Y) \end{aligned}$$

Bitangent bundle

- $\forall (x, e) \in TM, V_{(x,e)} \text{ and } H_{(x,e)} \text{ are isomorphic to } T_xM.$
- If $(x, e) \in TM$, then vectors of $T_{(x,e)}TM$ can be written as $X^h + Y^v$ where $X, Y \in T_xM$.
- Sasaki metric on TM :

$$egin{aligned} G(X^h,Y^h) &= g(X,Y), \ G(X^h,Y^v) &= 0, \ G(X^v,Y^v) &= g(X,Y) \end{aligned}$$

- G Riemannian metric on TM, connection, curvature, etc...
- Sasaki rather rigid.

Vector fields

• For $\sigma: M \to TM$,

$$d\sigma(X) = X^h + (\nabla_X \sigma)^V$$

• Energy functional for $\sigma: M \to TM$

$$\mathcal{E}(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_M |\nabla \sigma|^2 \psi_0$$

・ロト・日本・日本・日本・日本

Vector fields

• For
$$\sigma: M \to TM$$
,

$$d\sigma(X) = X^h + (\nabla_X \sigma)^v$$

• Energy functional for $\sigma: M \to TM$

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_{M} |\nabla \sigma|^2 v_g$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vector fields

• For
$$\sigma: M \to TM$$
,

$$d\sigma(X) = X^h + (\nabla_X \sigma)^v$$

• Energy functional for $\sigma: M \to TM$

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_{M} |\nabla \sigma|^2 v_g$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Vector fields

• For
$$\sigma: M \to TM$$
,

$$d\sigma(X) = X^h + (\nabla_X \sigma)^v$$

• Energy functional for $\sigma: M \to TM$

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_{M} |\nabla \sigma|^2 v_g$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●
Vector fields

- Two variational problems for σ :
- i) critical points among vector fields → harmonic sections ⇔ vertical part of τ (σ) = 0.
- ii) critical points among all maps from M to TM→ harmonic maps ⇔ r(σ) = 0.
- Tension fields

$\tau(\sigma) = (\nabla^* \nabla \sigma)' + (R(\sigma, \nabla_{\alpha} \sigma) \sigma)^{h}$

If M compact, harmonic section or map ⇒ parallel.
 Dead-ond.

Vector fields

- Two variational problems for σ :
- i) critical points among vector fields → harmonic sections
 ⇔ vertical part of τ(σ) = 0.
- ii) critical points among all maps from *M* to *TM* → harmonic maps ⇔ τ(σ) = 0.
- Tension fields

$$\tau(\sigma) = (\nabla^* \nabla \sigma)^{\vee} + (R(\sigma, \nabla_{e_i} \sigma) e_i)^h$$

Vector fields

- Two variational problems for σ :
- i) critical points among vector fields → harmonic sections
 ⇔ vertical part of τ(σ) = 0.
- ii) critical points among all maps from *M* to $TM \rightarrow$ harmonic maps $\Leftrightarrow \tau(\sigma) = 0$.
- Tension fields

$$\tau(\sigma) = (\nabla^* \nabla \sigma)^{\vee} + (R(\sigma, \nabla_{e_i} \sigma) e_i)^h$$

Vector fields

- Two variational problems for σ :
- i) critical points among vector fields → harmonic sections
 ⇔ vertical part of τ(σ) = 0.
- ii) critical points among all maps from *M* to $TM \rightarrow$ harmonic maps $\Leftrightarrow \tau(\sigma) = 0$.
- Tension fields

$$\tau(\sigma) = (\nabla^* \nabla \sigma)^{\vee} + (R(\sigma, \nabla_{e_i} \sigma) e_i)^h$$

Vector fields

- Two variational problems for σ :
- i) critical points among vector fields → harmonic sections
 ⇔ vertical part of τ(σ) = 0.
- ii) critical points among all maps from *M* to $TM \rightarrow$ harmonic maps $\Leftrightarrow \tau(\sigma) = 0$.
- Tension fields

$$\tau(\sigma) = (\nabla^* \nabla \sigma)^{\nu} + (R(\sigma, \nabla_{e_i} \sigma) e_i)^h$$

Vector fields

- Two variational problems for σ :
- i) critical points among vector fields → harmonic sections
 ⇔ vertical part of τ(σ) = 0.
- ii) critical points among all maps from *M* to $TM \rightarrow$ harmonic maps $\Leftrightarrow \tau(\sigma) = 0$.
- Tension fields

$$\tau(\sigma) = (\nabla^* \nabla \sigma)^{\mathbf{v}} + (\mathbf{R}(\sigma, \nabla_{\mathbf{e}_i} \sigma) \mathbf{e}_i)^h$$

Vector fields

- Two variational problems for σ :
- i) critical points among vector fields → harmonic sections
 ⇔ vertical part of τ(σ) = 0.
- ii) critical points among all maps from *M* to $TM \rightarrow$ harmonic maps $\Leftrightarrow \tau(\sigma) = 0$.
- Tension fields

$$\tau(\sigma) = (\nabla^* \nabla \sigma)^{\mathbf{v}} + (\mathbf{R}(\sigma, \nabla_{\mathbf{e}_i} \sigma) \mathbf{e}_i)^h$$

Vector fields

- Two variational problems for σ :
- i) critical points among vector fields → harmonic sections
 ⇔ vertical part of τ(σ) = 0.
- ii) critical points among all maps from *M* to $TM \rightarrow$ harmonic maps $\Leftrightarrow \tau(\sigma) = 0$.
- Tension fields

$$\tau(\sigma) = (\nabla^* \nabla \sigma)^{\mathbf{v}} + (\mathbf{R}(\sigma, \nabla_{\mathbf{e}_i} \sigma) \mathbf{e}_i)^h$$

- If *M* compact, harmonic section or map \Rightarrow parallel.
- Dead-end.

Vector fields : alternatives

- i) Unit sections, i.e. of T¹M.
- ii) other metrics than Sasaki, then discussion.
- iii) other functional (volume, biharmonic)...
- iv) other bundle -/

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vector fields : alternatives

- i) Unit sections, i.e. of T^1M .
- ii) other metrics than Sasaki, then discussion.
- iii) other functional (volume, biharmonic).
- iv) other bundle \checkmark

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Harmonic maps

- i) Unit sections, i.e. of T^1M .
- ii) other metrics than Sasaki, then discussion.
- iii) other functional (volume, biharmonic).
- iv) other bundle √

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Harmonic maps

- i) Unit sections, i.e. of T^1M .
- ii) other metrics than Sasaki, then discussion.
- iii) other functional (volume, biharmonic).
- iv) other bundle \checkmark

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Harmonic maps

- i) Unit sections, i.e. of T^1M .
- ii) other metrics than Sasaki, then discussion.
- iii) other functional (volume, biharmonic).
- iv) other bundle \checkmark

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Harmonic maps

- i) Unit sections, i.e. of T^1M .
- ii) other metrics than Sasaki, then discussion.
- iii) other functional (volume, biharmonic).
- iv) other bundle \checkmark

- Let G be a Lie group, $\xi : Q \to M$ a G-principal fibre bundle.
- Let *H* ⊂ *G* a Lie sub-group and *N* = *Q*/*H* then ζ :: *Q* → *N* is an *H*-principal sub-bundle.
- Then $\xi = x \circ \zeta$ where $x : N \to M$ is fibre bundle with fibre G/H, isomorphic to $Q \times_Q G/H$.
- Assume G/H is reductive, i.e. g = h ⊕ m and .
 Ad_G(H)m ⊂ m.
- M is equipped with a Riemannian metric g, G/H with G-invariant metric and Q with a g-valued connection ...

- Let *G* be a Lie group, $\xi : Q \to M$ a *G*-principal fibre bundle.
- Let *H* ⊂ *G* a Lie sub-group and *N* = *Q*/*H* then ζ : *Q* → *N* is an *H*-principal sub-bundle.
- Then $\xi = \pi \circ \zeta$ where $\pi : N \to M$ is fibre bundle with fibre G/H, isomorphic to $Q \times_G G/H$.
- Assume G/H is reductive, i.e. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $\mathrm{Ad}_G(H)\mathfrak{m} \subset \mathfrak{m}$.
- M is equipped with a Riemannian metric g, G/H with G-invariant metric and Q with a g-valued connection ω.

- Let *G* be a Lie group, $\xi : Q \to M$ a *G*-principal fibre bundle.
- Let *H* ⊂ *G* a Lie sub-group and *N* = *Q*/*H* then ζ : *Q* → *N* is an *H*-principal sub-bundle.
- Then $\xi = \pi \circ \zeta$ where $\pi : N \to M$ is fibre bundle with fibre G/H, isomorphic to $Q \times_G G/H$.
- Assume G/H is reductive, i.e. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $\mathrm{Ad}_G(H)\mathfrak{m} \subset \mathfrak{m}$.
- M is equipped with a Riemannian metric g, G/H with G-invariant metric and Q with a g-valued connection ω.

- Let *G* be a Lie group, $\xi : Q \to M$ a *G*-principal fibre bundle.
- Let H ⊂ G a Lie sub-group and N = Q/H then ζ : Q → N is an H-principal sub-bundle.
- Then $\xi = \pi \circ \zeta$ where $\pi : N \to M$ is fibre bundle with fibre G/H, isomorphic to $Q \times_G G/H$.
- Assume G/H is reductive, i.e. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $\mathrm{Ad}_G(H)\mathfrak{m} \subset \mathfrak{m}$.
- M is equipped with a Riemannian metric g, G/H with G-invariant metric and Q with a g-valued connection ω.

- Let *G* be a Lie group, $\xi : Q \to M$ a *G*-principal fibre bundle.
- Let H ⊂ G a Lie sub-group and N = Q/H then ζ : Q → N is an H-principal sub-bundle.
- Then $\xi = \pi \circ \zeta$ where $\pi : N \to M$ is fibre bundle with fibre G/H, isomorphic to $Q \times_G G/H$.
- Assume G/H is reductive, i.e. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $\mathrm{Ad}_G(H)\mathfrak{m} \subset \mathfrak{m}$.
- M is equipped with a Riemannian metric g, G/H with G-invariant metric and Q with a g-valued connection ω.

- Let *G* be a Lie group, $\xi : Q \to M$ a *G*-principal fibre bundle.
- Let *H* ⊂ *G* a Lie sub-group and *N* = *Q*/*H* then ζ : *Q* → *N* is an *H*-principal sub-bundle.
- Then $\xi = \pi \circ \zeta$ where $\pi : N \to M$ is fibre bundle with fibre G/H, isomorphic to $Q \times_G G/H$.
- Assume G/H is reductive, i.e. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $\mathrm{Ad}_G(H)\mathfrak{m} \subset \mathfrak{m}$.
- M is equipped with a Riemannian metric g, G/H with G-invariant metric and Q with a g-valued connection ω.

- Let *G* be a Lie group, $\xi : Q \to M$ a *G*-principal fibre bundle.
- Let *H* ⊂ *G* a Lie sub-group and *N* = *Q*/*H* then ζ : *Q* → *N* is an *H*-principal sub-bundle.
- Then $\xi = \pi \circ \zeta$ where $\pi : N \to M$ is fibre bundle with fibre G/H, isomorphic to $Q \times_G G/H$.
- Assume G/H is reductive, i.e. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $\mathrm{Ad}_G(H)\mathfrak{m} \subset \mathfrak{m}$.
- *M* is equipped with a Riemannian metric *g*, *G*/*H* with *G*-invariant metric and *Q* with a g-valued connection ω.

Homogeneous fibre bundles

- Then $TN = \mathcal{V} \oplus \mathcal{H}$,
- $\mathcal{V} = \ker d\pi = \zeta_i (\ker \zeta_i) \text{ and } \mathcal{H} = \zeta_i (\ker \omega_i).$
- . $N \leftarrow _{O}m$ elboud erdii labinocal film Y fo noitasilaivii. associated to $(2 \circ M \leftarrow N \to N \to m_{O})$
- Connector $\phi(\zeta, E) = q \circ \omega_n(E) \in m_0$ for all $E \in T_i Q$.
- Therefore metric h on N defined by $h = \pi^* g + \langle \phi, \phi \rangle$.

のとの 川 (中)・(川)・(日)・(日)

Homogeneous fibre bundles

• Then
$$TN = \mathcal{V} \oplus \mathcal{H}$$
,

• $\mathcal{V} = \ker d\pi = \zeta_*(\ker \xi_*)$ and $\mathcal{H} = \zeta_*(\ker \omega_*)$.

 Trivialisation of V with the canonical fibre bundle m_Q → N, associated to ζ : Q → N ⇒ I : V → m_Q.

• Connector $\phi(\zeta_*E) = q \bullet \omega_{\mathfrak{m}}(E) \in \mathfrak{m}_Q$ for all $E \in T_qQ$.

• Therefore metric *h* on *N* defined by $h = \pi^* g + \langle \phi, \phi \rangle$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ りゃう

Homogeneous fibre bundles

• Then $TN = \mathcal{V} \oplus \mathcal{H}$,

• $\mathcal{V} = \ker d\pi = \zeta_*(\ker \xi_*)$ and $\mathcal{H} = \zeta_*(\ker \omega_*)$.

- Trivialisation of V with the canonical fibre bundle m_Q → N, associated to ζ : Q → N ⇒ I : V → m_Q.
- Connector $\phi(\zeta_*E) = q \bullet \omega_{\mathfrak{m}}(E) \in \mathfrak{m}_Q$ for all $E \in T_qQ$.
- Therefore metric *h* on *N* defined by $h = \pi^* g + \langle \phi, \phi \rangle$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Homogeneous fibre bundles

- Then $TN = \mathcal{V} \oplus \mathcal{H}$,
- $\mathcal{V} = \ker d\pi = \zeta_*(\ker \xi_*)$ and $\mathcal{H} = \zeta_*(\ker \omega_*)$.
- Trivialisation of V with the canonical fibre bundle m_Q → N, associated to ζ : Q → N ⇒ I : V → m_Q.
- Connector $\phi(\zeta_* E) = q \bullet \omega_{\mathfrak{m}}(E) \in \mathfrak{m}_Q$ for all $E \in T_q Q$.
- Therefore metric *h* on *N* defined by $h = \pi^* g + \langle \phi, \phi \rangle$.

・ロト・四ト・モー・ 中下・ 日・ うらぐ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Homogeneous fibre bundles

Homogeneous fibre bundles

• Then $TN = \mathcal{V} \oplus \mathcal{H}$,

•
$$\mathcal{V} = \ker d\pi = \zeta_*(\ker \xi_*)$$
 and $\mathcal{H} = \zeta_*(\ker \omega_*)$.

- Trivialisation of V with the canonical fibre bundle m_Q → N, associated to ζ : Q → N ⇒ I : V → m_Q.
- Connector $\phi(\zeta_* E) = q \bullet \omega_{\mathfrak{m}}(E) \in \mathfrak{m}_Q$ for all $E \in T_q Q$.
- Therefore metric *h* on *N* defined by $h = \pi^* g + \langle \phi, \phi \rangle$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Homogeneous fibre bundles

Homogeneous fibre bundles

• Then $TN = \mathcal{V} \oplus \mathcal{H}$,

•
$$\mathcal{V} = \ker d\pi = \zeta_*(\ker \xi_*)$$
 and $\mathcal{H} = \zeta_*(\ker \omega_*)$.

- Trivialisation of V with the canonical fibre bundle m_Q → N, associated to ζ : Q → N ⇒ I : V → m_Q.
- Connector $\phi(\zeta_* E) = q \bullet \omega_{\mathfrak{m}}(E) \in \mathfrak{m}_Q$ for all $E \in T_q Q$.
- Therefore metric *h* on *N* defined by $h = \pi^* g + \langle \phi, \phi \rangle$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Homogeneous fibre bundles

Homogeneous fibre bundles

• Then $TN = \mathcal{V} \oplus \mathcal{H}$,

•
$$\mathcal{V} = \ker d\pi = \zeta_*(\ker \xi_*)$$
 and $\mathcal{H} = \zeta_*(\ker \omega_*)$.

- Trivialisation of V with the canonical fibre bundle m_Q → N, associated to ζ : Q → N ⇒ I : V → m_Q.
- Connector $\phi(\zeta_* E) = q \bullet \omega_{\mathfrak{m}}(E) \in \mathfrak{m}_Q$ for all $E \in T_q Q$.
- Therefore metric *h* on *N* defined by $h = \pi^* g + \langle \phi, \phi \rangle$.

- Take a group reduction of $\xi : Q \rightarrow M$.
- i.e. an H-principal sub-bundle $\xi': Q' \rightarrow M$ of Q.
- The submanifold $\zeta(G') \subset N$ is transverse to the fibres of $\pi : N \to M_1$ i.e. $T\zeta(G') \subset N$.
- Hence ((O) associates to any x ∈ M a unique element of N, i.e. it defines a section of m: N → M.
- and vice-versa, G⁽ = (−¹(σ(M)).)
- The reduction $Q' \subset Q$ will be called harmonic $W \rightarrow N$ is harmonic (as section or map).

- Take a group reduction of $\xi : Q \rightarrow M$.
- i.e. an *H*-principal sub-bundle $\xi' : Q' \to M$ of *Q*.
- The submanifold $\zeta(Q') \subset N$ is transverse to the fibres of $\pi: N \to M$, i.e. $T\zeta(Q') \subset \mathcal{H}$.
- Hence ζ(Q') associates to any x ∈ M a unique element of N, i.e. it defines a section of π : N → M.
- and vice-versa, $Q' = \zeta^{-1}(\sigma(M))$.
- The reduction $Q' \subset Q$ will be called harmonic if $\sigma : M \to N$ is harmonic (as section or map).

- Take a group reduction of $\xi : Q \rightarrow M$.
- i.e. an *H*-principal sub-bundle $\xi' : Q' \to M$ of *Q*.
- The submanifold $\zeta(Q') \subset N$ is transverse to the fibres of $\pi : N \to M$, i.e. $T\zeta(Q') \subset \mathcal{H}$.
- Hence ζ(Q') associates to any x ∈ M a unique element of N, i.e. it defines a section of π : N → M.
- and vice-versa, $Q' = \zeta^{-1}(\sigma(M))$.
- The reduction $Q' \subset Q$ will be called harmonic if $\sigma : M \to N$ is harmonic (as section or map).

- Take a group reduction of $\xi : Q \rightarrow M$.
- i.e. an *H*-principal sub-bundle $\xi' : Q' \to M$ of *Q*.
- The submanifold $\zeta(Q') \subset N$ is transverse to the fibres of $\pi : N \to M$, i.e. $T\zeta(Q') \subset \mathcal{H}$.
- Hence ζ(Q') associates to any x ∈ M a unique element of N, i.e. it defines a section of π : N → M.
- and vice-versa, $Q' = \zeta^{-1}(\sigma(M))$.
- The reduction $Q' \subset Q$ will be called harmonic if $\sigma : M \to N$ is harmonic (as section or map).

- Take a group reduction of $\xi : Q \to M$.
- i.e. an *H*-principal sub-bundle $\xi' : Q' \to M$ of *Q*.
- The submanifold $\zeta(Q') \subset N$ is transverse to the fibres of $\pi : N \to M$, i.e. $T\zeta(Q') \subset \mathcal{H}$.
- Hence ζ(Q') associates to any x ∈ M a unique element of N, i.e. it defines a section of π : N → M.
- and vice-versa, $Q' = \zeta^{-1}(\sigma(M))$.
- The reduction $Q' \subset Q$ will be called harmonic if $\sigma : M \to N$ is harmonic (as section or map).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Homogeneous fibre bundles

- Take a group reduction of $\xi : \mathbf{Q} \to \mathbf{M}$.
- i.e. an *H*-principal sub-bundle $\xi' : Q' \to M$ of *Q*.
- The submanifold $\zeta(Q') \subset N$ is transverse to the fibres of $\pi : N \to M$, i.e. $T\zeta(Q') \subset \mathcal{H}$.
- Hence ζ(Q') associates to any x ∈ M a unique element of N, i.e. it defines a section of π : N → M.
- and vice-versa, $Q' = \zeta^{-1}(\sigma(M))$.
- The reduction $Q' \subset Q$ will be called harmonic if $\sigma : M \to N$ is harmonic (as section or map).

- Take a group reduction of $\xi : Q \to M$.
- i.e. an *H*-principal sub-bundle $\xi' : Q' \to M$ of *Q*.
- The submanifold $\zeta(Q') \subset N$ is transverse to the fibres of $\pi : N \to M$, i.e. $T\zeta(Q') \subset \mathcal{H}$.
- Hence ζ(Q') associates to any x ∈ M a unique element of N, i.e. it defines a section of π : N → M.
- and vice-versa, $Q' = \zeta^{-1}(\sigma(M))$.
- The reduction $Q' \subset Q$ will be called harmonic if $\sigma : M \to N$ is harmonic (as section or map).

- Take a group reduction of $\xi : Q \rightarrow M$.
- i.e. an *H*-principal sub-bundle $\xi' : Q' \to M$ of *Q*.
- The submanifold $\zeta(Q') \subset N$ is transverse to the fibres of $\pi : N \to M$, i.e. $T\zeta(Q') \subset \mathcal{H}$.
- Hence ζ(Q') associates to any x ∈ M a unique element of N, i.e. it defines a section of π : N → M.
- and vice-versa, $Q' = \zeta^{-1}(\sigma(M))$.
- The reduction Q' ⊂ Q will be called harmonic if σ : M → N is harmonic (as section or map).
Example : almost hermitian structures

- Q is the fibre bundle of unitary frames, G = O(n) and H = SU(k) (n = 2k).
- is the algebra to skew-symmetric matrices commuting $(a_k, a_k) = (a_k, a_k) = (a_k, a_k) = (a_k, a_k)$
- o m is the set of skew-symmetric matrices anti-commuting with up:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(日) (日) (日) (日) (日) (日) (日)

Complex structures

Example : almost hermitian structures

- *Q* is the fibre bundle of unitary frames, G = O(n) and H = SU(k) (n = 2k).
- \mathfrak{h} is the algebra of skew-symmetric matrices commuting with $J_0 = \begin{pmatrix} \mathbb{O}_k & -\mathbb{I}_k \\ \mathbb{I}_k & \mathbb{O}_k \end{pmatrix}$
- m is the set of skew-symmetric matrices anti-commuting with J₀.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Complex structures

Example : almost hermitian structures

- *Q* is the fibre bundle of unitary frames, G = O(n) and H = SU(k) (n = 2k).
- \mathfrak{h} is the algebra of skew-symmetric matrices commuting with $J_0 = \begin{pmatrix} \mathbb{O}_k & -\mathbb{I}_k \\ \mathbb{I}_k & \mathbb{O}_k \end{pmatrix}$
- m is the set of skew-symmetric matrices anti-commuting with J₀.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Complex structures

Example : almost hermitian structures

- *Q* is the fibre bundle of unitary frames, G = O(n) and H = SU(k) (n = 2k).
- \mathfrak{h} is the algebra of skew-symmetric matrices commuting with $J_0 = \begin{pmatrix} \mathbb{O}_k & -\mathbb{I}_k \\ \mathbb{I}_k & \mathbb{O}_k \end{pmatrix}$

 m is the set of skew-symmetric matrices anti-commuting with J₀.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Complex structures

Example : almost hermitian structures

- *Q* is the fibre bundle of unitary frames, G = O(n) and H = SU(k) (n = 2k).
- \mathfrak{h} is the algebra of skew-symmetric matrices commuting with $J_0 = \begin{pmatrix} \mathbb{O}_k & -\mathbb{I}_k \\ \mathbb{I}_k & \mathbb{O}_k \end{pmatrix}$
- m is the set of skew-symmetric matrices anti-commuting with J₀.

- On π^{*} TM universal complex structure J defined for y ∈ N by
- (7()) is the automorphism of T₂(g)¹/d whose matrix, in any frame of C⁻¹(y), is given by 36.
- g₀ is the fibre bundle of skew-symmetric endomorphisms of TM.
- The fibres de t_i(n₀) above y ∈ N are skew-symmetric endomorphisms of T_{n(r)}M which commute (anti-commute) with (7(y)).

- On $\pi^* TM$ universal complex structure \mathcal{J} defined for $y \in N$ by
- $\mathcal{J}(y)$ is the automorphism of $T_{\pi(y)}M$ whose matrix, in any frame of $\zeta^{-1}(y)$, is given by J_0 .
- g_Q is the fibre bundle of skew-symmetric endomorphisms of *TM*.
- The fibres de h_Q (m_Q) above y ∈ N are skew-symmetric endomorphisms of T_{π(y)}M which commute (anti-commute) with J(y).
- An element β of \mathfrak{g}_Q decomposes into

$$\frac{1}{2}\mathcal{J}[\beta,\mathcal{J}] - \frac{1}{2}\mathcal{J}\{\beta,\mathcal{J}\}$$

- On π^*TM universal complex structure \mathcal{J} defined for $y \in N$ by
- *J*(*y*) is the automorphism of *T*_{π(y)}*M* whose matrix, in any frame of ζ⁻¹(y), is given by *J*₀.
- g_Q is the fibre bundle of skew-symmetric endomorphisms of *TM*.
- The fibres de \mathfrak{h}_{Q} (\mathfrak{m}_{Q}) above $y \in N$ are skew-symmetric endomorphisms of $T_{\pi(y)}M$ which commute (anti-commute) with $\mathcal{J}(y)$.
- An element β of \mathfrak{g}_Q decomposes into

$$\frac{1}{2}\mathcal{J}[\beta,\mathcal{J}] - \frac{1}{2}\mathcal{J}\{\beta,\mathcal{J}\}$$

- On π^{*}TM universal complex structure J defined for y ∈ N by
- *J*(*y*) is the automorphism of *T*_{π(y)}*M* whose matrix, in any frame of ζ⁻¹(y), is given by *J*₀.
- g_Q is the fibre bundle of skew-symmetric endomorphisms of *TM*.
- The fibres de h_Q (m_Q) above y ∈ N are skew-symmetric endomorphisms of T_{π(y)}M which commute (anti-commute) with J(y).
- An element β of \mathfrak{g}_Q decomposes into

$$\frac{1}{2}\mathcal{J}[\beta,\mathcal{J}] - \frac{1}{2}\mathcal{J}\{\beta,\mathcal{J}\}$$

- On π^{*}TM universal complex structure J defined for y ∈ N by
- *J*(*y*) is the automorphism of *T*_{π(y)}*M* whose matrix, in any frame of ζ⁻¹(y), is given by *J*₀.
- g_Q is the fibre bundle of skew-symmetric endomorphisms of *TM*.
- The fibres de h_Q (m_Q) above y ∈ N are skew-symmetric endomorphisms of T_{π(y)}M which commute (anti-commute) with J(y).
- An element β of \mathfrak{g}_Q decomposes into

$$\frac{1}{2}\mathcal{J}[\beta,\mathcal{J}] - \frac{1}{2}\mathcal{J}\{\beta,\mathcal{J}\}$$

- On π^*TM universal complex structure $\mathcal J$ defined for $y \in N$ by
- *J*(*y*) is the automorphism of *T*_{π(y)}*M* whose matrix, in any frame of ζ⁻¹(y), is given by *J*₀.
- g_Q is the fibre bundle of skew-symmetric endomorphisms of *TM*.
- The fibres de h_Q (m_Q) above y ∈ N are skew-symmetric endomorphisms of T_{π(y)}M which commute (anti-commute) with J(y).
- An element β of \mathfrak{g}_Q decomposes into

$$\frac{1}{2}\mathcal{J}[\beta,\mathcal{J}] - \frac{1}{2}\mathcal{J}\{\beta,\mathcal{J}\}$$

- On π^*TM universal complex structure $\mathcal J$ defined for $y \in N$ by
- *J*(*y*) is the automorphism of *T*_{π(y)}*M* whose matrix, in any frame of ζ⁻¹(y), is given by *J*₀.
- g_Q is the fibre bundle of skew-symmetric endomorphisms of *TM*.
- The fibres de h_Q (m_Q) above y ∈ N are skew-symmetric endomorphisms of T_{π(y)}M which commute (anti-commute) with J(y).
- An element β of \mathfrak{g}_Q decomposes into

$$\frac{1}{2}\mathcal{J}[\beta,\mathcal{J}] - \frac{1}{2}\mathcal{J}\{\beta,\mathcal{J}\}$$

Harmonicity of almost hermitian structures

- If σ is a section of π : N → M then J = σ* J is an almost complex structure.
- Functional

$\frac{\dim M}{2} + \frac{1}{2} \int_{M} \frac{1}{2} |\nabla J|^2 v_0.$

- e and $l(r'\sigma) = \frac{1}{2} [\nabla^* \nabla J_r J]$.
- So J is a harmonic section iff V°VJ and J commute.
- J is a harmonic map if, moreover, it satisfies

 $g\left(\left[R(G_{0},Z),J\right],\nabla_{G}J\right)=0, \quad \forall Z$

Harmonicity of almost hermitian structures

- If σ is a section of $\pi : N \to M$ then $J = \sigma^* \mathcal{J}$ is an almost complex structure.
- Functional

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_M \frac{1}{4} |\nabla J|^2 v_g.$$

- and $I(\tau^{\nu}\sigma) = \frac{1}{4} [\nabla^* \nabla J, J].$
- So J is a harmonic section iff $\nabla^* \nabla J$ and J commute.
- J is a harmonic map if, moreover, it satisfies

 $g\left([R(E_i,Z),J],
abla_{E_i}J
ight)=0, \quad \forall Z$

Harmonicity of almost hermitian structures

If σ is a section of π : N → M then J = σ* J is an almost complex structure.

Functional

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_M \frac{1}{4} |\nabla J|^2 v_g.$$

- and $I(\tau^{\nu}\sigma) = \frac{1}{4} [\nabla^* \nabla J, J]$.
- So J is a harmonic section iff $\nabla^* \nabla J$ and J commute.
- J is a harmonic map if, moreover, it satisfies

 $g\left([R(E_i,Z),J],
abla_{E_i}J
ight) = 0, \quad \forall Z$

Harmonicity of almost hermitian structures

- If σ is a section of π : N → M then J = σ* J is an almost complex structure.
- Functional

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_M \frac{1}{4} |\nabla J|^2 v_g.$$

- and $I(\tau^{v}\sigma) = \frac{1}{4} [\nabla^* \nabla J, J].$
- So J is a harmonic section iff $\nabla^* \nabla J$ and J commute.
- J is a harmonic map if, moreover, it satisfies

 $g\left([R(E_i,Z),J],
abla_{E_i}J
ight)=0, \quad \forall Z$

Harmonicity of almost hermitian structures

- If σ is a section of π : N → M then J = σ* J is an almost complex structure.
- Functional

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_M \frac{1}{4} |\nabla J|^2 v_g.$$

• and
$$I(\tau^{\nu}\sigma) = \frac{1}{4} [\nabla^* \nabla J, J].$$

• So *J* is a harmonic section iff $\nabla^* \nabla J$ and *J* commute.

• J is a harmonic map if, moreover, it satisfies

 $g\left([R(E_i,Z),J],
abla_{E_i}J
ight) = 0, \quad \forall Z$

Harmonicity of almost hermitian structures

- If σ is a section of π : N → M then J = σ* J is an almost complex structure.
- Functional

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_M \frac{1}{4} |\nabla J|^2 v_g.$$

- and $I(\tau^{\nu}\sigma) = \frac{1}{4} [\nabla^* \nabla J, J].$
- So *J* is a harmonic section iff $\nabla^* \nabla J$ and *J* commute.
- J is a harmonic map if, moreover, it satisfies

 $g\left([R(E_i,Z),J],
abla_{E_i}J
ight)=0,\quad \forall Z$

Harmonicity of almost hermitian structures

- If σ is a section of π : N → M then J = σ* J is an almost complex structure.
- Functional

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_M \frac{1}{4} |\nabla J|^2 v_g.$$

- and $I(\tau^{\nu}\sigma) = \frac{1}{4} [\nabla^* \nabla J, J].$
- So *J* is a harmonic section iff $\nabla^* \nabla J$ and *J* commute.
- J is a harmonic map if, moreover, it satisfies

$$g\left([R(E_i,Z),J],
abla_{E_i}J
ight)=0, \quad \forall Z$$

 $) \land (\land)$

Examples harmonic structures

- If J is nearly-Kähler, i.e. ∇_XJ(X) = 0, then J is a harmonic map.
- $\begin{array}{l} & (1, J, i_{2}) \text{-symplectic, i.e. } \nabla J(JX, JY) = \nabla J(X, Y), \\ & \text{then } J \text{ is a harmonic section iff Ricci" is symmetric. } \end{array}$
- $\operatorname{Riccl}^{*}(X, Y) = (R(X, E_{i})JE_{i}, Y)$

Examples harmonic structures

- If *J* is nearly-Kähler, i.e. $\nabla_X J(X) = 0$, then *J* is a harmonic map.
- If J is (1,2)-symplectic, i.e. $\nabla J(JX, JY) = -\nabla J(X, Y)$, then J is a harmonic section iff Ricci^{*} is symmetric.
- Ricci^{*} $(X, Y) = \langle R(X, E_i)JE_i, Y \rangle$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples harmonic structures

- If *J* is nearly-Kähler, i.e. ∇_XJ(X) = 0, then *J* is a harmonic map.
- If J is (1,2)-symplectic, i.e. ∇J(JX, JY) = −∇J(X, Y), then J is a harmonic section iff Ricci* is symmetric.
- Ricci^{*} $(X, Y) = \langle R(X, E_i)JE_i, Y \rangle$.

◆□▶ ◆□▶ ◆三≯ ◆三≯ ● ● ● ●

(日) (日) (日) (日) (日) (日) (日)

Complex structures

Examples harmonic structures

- If J is nearly-Kähler, i.e. ∇_XJ(X) = 0, then J is a harmonic map.
- If J is (1,2)-symplectic, i.e. ∇J(JX, JY) = −∇J(X, Y), then J is a harmonic section iff Ricci* is symmetric.
- Ricci^{*} $(X, Y) = \langle R(X, E_i)JE_i, Y \rangle$

(日) (日) (日) (日) (日) (日) (日)

Complex structures

Examples harmonic structures

- If J is nearly-Kähler, i.e. ∇_XJ(X) = 0, then J is a harmonic map.
- If J is (1,2)-symplectic, i.e. ∇J(JX, JY) = −∇J(X, Y), then J is a harmonic section iff Ricci* is symmetric.
- Ricci^{*} $(X, Y) = \langle R(X, E_i)JE_i, Y \rangle$.

Definition

 An almost contact structure on a Riemannian manifold (*M*, *g*) is the data :

A unit vector field § and a tensor (1, 1) Ø such that ::

$\theta^2 = -\operatorname{Id} + \eta \otimes \xi$

with $\eta(X) = g(\xi, X)$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

Definition

- An almost contact structure on a Riemannian manifold (M, g) is the data :
- A unit vector field ξ and a tensor (1, 1) θ such that :

 $\theta^2 = -\operatorname{Id} + \eta \otimes \xi$

with $\eta(X) = g(\xi, X)$.

(日) (日) (日) (日) (日) (日) (日)

Almost contact structures

Definition

- An almost contact structure on a Riemannian manifold (M, g) is the data :
- A unit vector field ξ and a tensor $(1, 1) \theta$ such that :

 $\theta^2 = -\operatorname{Id} + \eta \otimes \xi$

with $\eta(X) = g(\xi, X)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Almost contact structures

Definition

- An almost contact structure on a Riemannian manifold (M, g) is the data :
- A unit vector field ξ and a tensor $(1, 1) \theta$ such that :

 $\theta^2 = -\operatorname{Id} + \eta \otimes \xi$

with $\eta(X) = g(\xi, X)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Almost contact structures

Definition

۲

- An almost contact structure on a Riemannian manifold (M, g) is the data :
- A unit vector field ξ and a tensor (1, 1) θ such that :

$$\theta^2 = -\operatorname{Id} + \eta \otimes \xi$$

with $\eta(X) = g(\xi, X)$.

(日)

Almost contact structures

Examples

- Almost complex manifolds ×S¹.
- Hypersurfaces of an almost complex manifold.
- S⁶ ⊂ S⁶ where S⁶ is the unit sphere of imaginary Cayley numbers with its vector product *u* × *v*.
- $\mathcal{J}^{\otimes}(X) = N \times X$ is nearly-Kähler.
- bina $(\frac{2}{N_0})^{N_0} = -2$, třilv baqqiupa $(0 = -N_0)^{N_0}$, bina ($\frac{2}{N_0} = -2N_0$) N_0 . Statinos teorita al $\frac{2}{N_0}$ $(N_0 + 2N_0)^{N_0}$.

Examples

- Almost complex manifolds ×S¹.
- Hypersurfaces of an almost complex manifold.
- S⁵ ⊂ S⁶ where S⁶ is the unit sphere of imaginary Cayley numbers with its vector product u × v.
- $J^{\mathbb{S}^6}(X) = N imes X$ is nearly-Kähler.
- \mathbb{S}^5 ($x^7 = 0$) equipped with $\xi = -J^{\mathbb{S}^6}(\frac{\partial}{\partial x^7})$ and

 $\phi(X) = J^{s^{\circ}}(X) + \eta(X) \frac{\partial}{\partial x^7}$, is almost contact.

Examples

Almost complex manifolds ×S¹.

- Hypersurfaces of an almost complex manifold.
- S⁵ ⊂ S⁶ where S⁶ is the unit sphere of imaginary Cayley numbers with its vector product *u* × *v*.
- $J^{\mathbb{S}^6}(X) = N \times X$ is nearly-Kähler.
- \mathbb{S}^5 ($x^7 = 0$) equipped with $\xi = -J^{\mathbb{S}^6}(\frac{\partial}{\partial x^7})$ and

 $\phi(X) = J^{\mathbb{S}^{\circ}}(X) + \eta(X) \frac{\partial}{\partial x^7}$, is almost contact.

Examples

- Almost complex manifolds ×S¹.
- Hypersurfaces of an almost complex manifold.
- S⁵ ⊂ S⁶ where S⁶ is the unit sphere of imaginary Cayley numbers with its vector product *u* × *v*.
- $J^{\mathbb{S}^6}(X) = N imes X$ is nearly-Kähler.
- \mathbb{S}^5 ($x^7 = 0$) equipped with $\xi = -J^{\mathbb{S}^6}(\frac{\partial}{\partial x^7})$ and

 $\phi(X) = J^{S^{6}}(X) + \eta(X) \frac{\partial}{\partial x^{7}}$, is almost contact.

・ロト・個ト・モト・モト ヨー のへで

Examples

- Almost complex manifolds ×S¹.
- Hypersurfaces of an almost complex manifold.
- S⁵ ⊂ S⁶ where S⁶ is the unit sphere of imaginary Cayley numbers with its vector product *u* × *v*.
- $J^{\mathbb{S}^{b}}(X) = N \times X$ is nearly-Kähler.
- $\mathbb{S}^5 (x^7 = 0)$ equipped with $\xi = -J^{\mathbb{S}^6} (\frac{\partial}{\partial x^7})$ and
 - $\phi(X) = J^{\otimes}(X) + \eta(X) \frac{\partial}{\partial x^7}$, is almost contact.

<ロ> < @> < E> < E> E のQの

Examples

- Almost complex manifolds ×S¹.
- Hypersurfaces of an almost complex manifold.
- S⁵ ⊂ S⁶ where S⁶ is the unit sphere of imaginary Cayley numbers with its vector product *u* × *v*.

•
$$J^{\mathbb{S}^6}(X) = N \times X$$
 is nearly-Kähler.

• $\mathbb{S}^5 (x^7 = 0)$ equipped with $\xi = -J^{\mathbb{S}^6}(\frac{\partial}{\partial x^7})$ and $\phi(X) = J^{\mathbb{S}^6}(X) + \eta(X)\frac{\partial}{\partial x^7}$, is almost contact.

<ロ> <@> < E> < E> E のQの

(日) (日) (日) (日) (日) (日) (日)

Almost contact structures

Examples

- Almost complex manifolds ×S¹.
- Hypersurfaces of an almost complex manifold.
- S⁵ ⊂ S⁶ where S⁶ is the unit sphere of imaginary Cayley numbers with its vector product *u* × *v*.
- $J^{\mathbb{S}^6}(X) = N \times X$ is nearly-Kähler.
- \mathbb{S}^5 ($x^7 = 0$) equipped with $\xi = -J^{\mathbb{S}^6}(\frac{\partial}{\partial x^7})$ and $\phi(X) = J^{\mathbb{S}^6}(X) + \eta(X)\frac{\partial}{\partial x^7}$, is almost contact.
- Frame bundle, G = SO(m)
- Reduction to the group H = U(n) × 1 ⇒ m = 2n + 1
- $= Matrix \phi_0 = \begin{pmatrix} O_1 & -O_2 & O_3 \\ J_4 & O_4 & O_4 \\ O_1 & O_2 & O_4 \end{pmatrix}$
- $H = \{A \in G : A\phi_0 A^{-1} = \phi_0\}$ and $b = \{a \in g : \{a, \phi_0\} = 0\}$. • BULM = ms Θ ms
- $\begin{array}{l} \mbox{ or } n_1 := \{a \in \mathfrak{g} : \{a, \phi_0\} := 0\}, \mbox{ and } \\ \mbox{ mod} := \{a \in \mathfrak{g} : \{a, \eta_0, 0, \xi_0\} := 0\}, \ \xi_0 := (0, \cdots, 0, 1) \in \mathbb{R}^n, \eta_0 \in \mathbb{R}^n, \eta_0$

- Frame bundle, G = SO(m)
- Reduction to the group $H = U(n) \times 1 \Rightarrow m = 2n + 1$
- Matrix $\phi_0 = \begin{pmatrix} \mathbb{I}_k & \mathbb{O}_k & 0\\ 0 & \cdots & 0 \end{pmatrix}$
- $H = \{A \in G : A\phi_0 A^{-1} = \phi_0\}$ and $\mathfrak{h} = \{a \in \mathfrak{g} : [a, \phi_0] = 0\}.$
- But $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$
- $\mathfrak{m}_1 = \{ a \in \mathfrak{g} : \{ a, \phi_0 \} = 0 \}$ and $\mathfrak{m}_2 = \{ a \in \mathfrak{g} : \{ a, \eta_0 \otimes \xi_0 \} = 0 \}, \, \xi_0 = (0, \cdots, 0, 1) \in \mathbb{R}^m, \, \eta_0$ its dual.

- Frame bundle, G = SO(m)
- Reduction to the group $H = U(n) \times 1 \Rightarrow m = 2n + 1$
- Matrix $\phi_0 = \begin{pmatrix} \mathbb{I}_k & \mathbb{O}_k & 0\\ 0 & \cdots & 0 \end{pmatrix}$
- $H = \{A \in G : A\phi_0 A^{-1} = \phi_0\}$ and $\mathfrak{h} = \{a \in \mathfrak{g} : [a, \phi_0] = 0\}.$
- But $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$
- $\mathfrak{m}_1 = \{ a \in \mathfrak{g} : \{ a, \phi_0 \} = 0 \}$ and $\mathfrak{m}_2 = \{ a \in \mathfrak{g} : \{ a, \eta_0 \otimes \xi_0 \} = 0 \}, \, \xi_0 = (0, \cdots, 0, 1) \in \mathbb{R}^m, \, \eta_0$ its dual.

- Frame bundle, G = SO(m)
- Reduction to the group $H = U(n) \times 1 \Rightarrow m = 2n + 1$
- Matrix $\phi_0 = \begin{pmatrix} \mathbb{I}_k & \mathbb{O}_k & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- $H = \{A \in G : A\phi_0 A^{-1} = \phi_0\}$ and $\mathfrak{h} = \{a \in \mathfrak{g} : [a, \phi_0] = 0\}.$
- But $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$
- $\mathfrak{m}_1 = \{ a \in \mathfrak{g} : \{ a, \phi_0 \} = 0 \}$ and $\mathfrak{m}_2 = \{ a \in \mathfrak{g} : \{ a, \eta_0 \otimes \xi_0 \} = 0 \}, \, \xi_0 = (0, \cdots, 0, 1) \in \mathbb{R}^m, \, \eta_0$ its dual.

- Frame bundle, G = SO(m)
- Reduction to the group $H = U(n) \times 1 \Rightarrow m = 2n + 1$

• Matrix
$$\phi_0 = \begin{pmatrix} \mathbb{O}_n & -\mathbb{I}_n & 0 \\ \mathbb{I}_k & \mathbb{O}_k & 0 \\ 0 & \cdots & 0 \end{pmatrix}$$

- $H = \{A \in G : A\phi_0 A^{-1} = \phi_0\}$ and $\mathfrak{h} = \{a \in \mathfrak{g} : [a, \phi_0] = 0\}.$
- But $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$
- $\mathfrak{m}_1 = \{ a \in \mathfrak{g} : \{ a, \phi_0 \} = 0 \}$ and $\mathfrak{m}_2 = \{ a \in \mathfrak{g} : \{ a, \eta_0 \otimes \xi_0 \} = 0 \}, \, \xi_0 = (0, \cdots, 0, 1) \in \mathbb{R}^m, \, \eta_0$ its dual.

- Frame bundle, G = SO(m)
- Reduction to the group $H = U(n) \times 1 \Rightarrow m = 2n + 1$

• Matrix
$$\phi_0 = \begin{pmatrix} \mathbb{O}_n & -\mathbb{I}_n & 0 \\ \mathbb{I}_k & \mathbb{O}_k & 0 \\ 0 & \cdots & 0 \end{pmatrix}$$

- $H = \{A \in G : A\phi_0 A^{-1} = \phi_0\}$ and $\mathfrak{h} = \{a \in \mathfrak{g} : [a, \phi_0] = 0\}.$
- But $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$
- $\mathfrak{m}_1 = \{ a \in \mathfrak{g} : \{ a, \phi_0 \} = 0 \}$ and $\mathfrak{m}_2 = \{ a \in \mathfrak{g} : \{ a, \eta_0 \otimes \xi_0 \} = 0 \}, \, \xi_0 = (0, \cdots, 0, 1) \in \mathbb{R}^m, \, \eta_0$ its dual.

- Frame bundle, G = SO(m)
- Reduction to the group $H = U(n) \times 1 \Rightarrow m = 2n + 1$

• Matrix
$$\phi_0 = \begin{pmatrix} \mathbb{O}_n & -\mathbb{I}_n & 0 \\ \mathbb{I}_k & \mathbb{O}_k & 0 \\ 0 & \cdots & 0 \end{pmatrix}$$

- $H = \{A \in G : A\phi_0 A^{-1} = \phi_0\}$ and $\mathfrak{h} = \{a \in \mathfrak{g} : [a, \phi_0] = 0\}.$
- But $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$
- $\mathfrak{m}_1 = \{ a \in \mathfrak{g} : \{ a, \phi_0 \} = 0 \}$ and $\mathfrak{m}_2 = \{ a \in \mathfrak{g} : \{ a, \eta_0 \otimes \xi_0 \} = 0 \}, \, \xi_0 = (0, \cdots, 0, 1) \in \mathbb{R}^m, \, \eta_0$ its dual.

The angle of reduction

- Frame bundle, G = SO(m)
- Reduction to the group $H = U(n) \times 1 \Rightarrow m = 2n + 1$

• Matrix
$$\phi_0 = \begin{pmatrix} \mathbb{O}_n & -\mathbb{I}_n & 0\\ \mathbb{I}_k & \mathbb{O}_k & 0\\ 0 & \cdots & 0 \end{pmatrix}$$

• $H = \{A \in G : A\phi_0 A^{-1} = \phi_0\}$ and $\mathfrak{h} = \{a \in \mathfrak{g} : [a, \phi_0] = 0\}.$

• But
$$\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$$

•
$$\mathfrak{m}_1 = \{ a \in \mathfrak{g} : \{ a, \phi_0 \} = 0 \}$$
 and
 $\mathfrak{m}_2 = \{ a \in \mathfrak{g} : \{ a, \eta_0 \otimes \xi_0 \} = 0 \}, \, \xi_0 = (0, \cdots, 0, 1) \in \mathbb{R}^m, \, \eta_0$
its dual.

The angle of reduction

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$, Ad(*H*)-invariant.
- $a_j = -\frac{1}{2} (\phi_0 \{a, \phi_0\} + a \circ (\eta_0 \otimes \xi_0)),$
 - $a_{n_1} = \frac{1}{2} \{ \phi_0[a, \phi_0] a \circ (\eta_0 \otimes \xi_0) \}, a_{n_2} = \{ a, \eta_0 \otimes \xi_0 \}$
- \circ m₁ and m₂ \Rightarrow two equations for harmonic sections.
- Universal almost contact structure.
- Pull-back by $\sigma: M \rightarrow N$.

・ロト・「聞・・」 「 「 ・ 」 「 ・ 」 ・ (日 ・

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Almost contact structures

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$, Ad(*H*)-invariant.
- $\mathbf{a}_{\mathfrak{h}} = -\frac{1}{2}(\phi_0\{\mathbf{a},\phi_0\} + \mathbf{a} \circ (\eta_0 \otimes \xi_0)),$
 - $a_{\mathfrak{m}_1} = \frac{1}{2}(\phi_0[a,\phi_0] a \circ (\eta_0 \otimes \xi_0)), a_{\mathfrak{m}_2} = \{a,\eta_0 \otimes \xi_0\}$
- \mathfrak{m}_1 and $\mathfrak{m}_2 \Rightarrow$ two equations for harmonic sections.
- Universal almost contact structure.
- Pull-back by $\sigma: M \to N$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Almost contact structures

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$, Ad(*H*)-invariant.
- $\mathbf{a}_{\mathfrak{h}} = -\frac{1}{2}(\phi_0\{\mathbf{a},\phi_0\} + \mathbf{a} \circ (\eta_0 \otimes \xi_0)),$
 - $a_{\mathfrak{m}_1} = \frac{1}{2}(\phi_0[a,\phi_0] a \circ (\eta_0 \otimes \xi_0)), a_{\mathfrak{m}_2} = \{a,\eta_0 \otimes \xi_0\}$
- \mathfrak{m}_1 and $\mathfrak{m}_2 \Rightarrow$ two equations for harmonic sections.
- Universal almost contact structure.
- Pull-back by $\sigma: M \to N$.

The angle of reduction

•
$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$$
, $\operatorname{Ad}(H)$ -invariant.

•
$$\mathbf{a}_{\mathfrak{h}} = -\frac{1}{2}(\phi_0\{\mathbf{a},\phi_0\} + \mathbf{a} \circ (\eta_0 \otimes \xi_0)),$$

$$a_{\mathfrak{m}_1} = \frac{1}{2}(\phi_0[a,\phi_0] - a \circ (\eta_0 \otimes \xi_0)), a_{\mathfrak{m}_2} = \{a,\eta_0 \otimes \xi_0\}$$

• \mathfrak{m}_1 and $\mathfrak{m}_2 \Rightarrow$ two equations for harmonic sections.

Universal almost contact structure.

• Pull-back by $\sigma: M \to N$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Almost contact structures

•
$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$$
, $\operatorname{Ad}(H)$ -invariant.

•
$$a_{\mathfrak{h}} = -\frac{1}{2}(\phi_0\{a,\phi_0\} + a \circ (\eta_0 \otimes \xi_0)),$$

$$\boldsymbol{a}_{\mathfrak{m}_1} = \frac{1}{2}(\phi_0[\boldsymbol{a},\phi_0] - \boldsymbol{a} \circ (\eta_0 \otimes \xi_0)), \, \boldsymbol{a}_{\mathfrak{m}_2} = \{\boldsymbol{a},\eta_0 \otimes \xi_0\}$$

- \mathfrak{m}_1 and $\mathfrak{m}_2 \Rightarrow$ two equations for harmonic sections.
- Universal almost contact structure.
- Pull-back by $\sigma: M \to N$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Almost contact structures

•
$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$$
, $\operatorname{Ad}(H)$ -invariant.

•
$$a_{\mathfrak{h}} = -\frac{1}{2}(\phi_0\{a,\phi_0\} + a \circ (\eta_0 \otimes \xi_0)), a_{\mathfrak{m}_1} = \frac{1}{2}(\phi_0[a,\phi_0] - a \circ (\eta_0 \otimes \xi_0)), a_{\mathfrak{m}_2} = \{a,\eta_0 \otimes \xi_0\}$$

- \mathfrak{m}_1 and $\mathfrak{m}_2 \Rightarrow$ two equations for harmonic sections.
- Universal almost contact structure.
- Pull-back by $\sigma: M \to N$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Almost contact structures

The angle of reduction

• $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$, Ad(H)-invariant.

•
$$a_{\mathfrak{h}} = -\frac{1}{2}(\phi_0\{a,\phi_0\} + a \circ (\eta_0 \otimes \xi_0)), \\ a_{\mathfrak{m}_1} = \frac{1}{2}(\phi_0[a,\phi_0] - a \circ (\eta_0 \otimes \xi_0)), a_{\mathfrak{m}_2} = \{a,\eta_0 \otimes \xi_0\}$$

- \mathfrak{m}_1 and $\mathfrak{m}_2 \Rightarrow$ two equations for harmonic sections.
- Universal almost contact structure.
- Pull-back by $\sigma: M \to N$.

Harmonicity equations

First harmonic sections equation :

 $[ar{
abla}^*ar{
abla}J,J]=0$

Second harmonic sections equation :

$$\nabla^* \nabla \{ = |\nabla \xi|^2 - \frac{1}{2}J \text{ or } \operatorname{trace}(\nabla J \otimes \xi) \}$$

- Harmonic maps equation :::
 - $(\nabla_{i_{1}} A_{i_{1}}^{i_{1}} (E_{i_{1}} X), A) + 0 (\nabla_{i_{1}} E_{i_{1}} B(E_{i_{1}} X) E_{i_{2}}) = 0$ $\forall X \in TM$

Harmonicity equations

• First harmonic sections equation :

 $[ar{
abla}^*ar{
abla}J,J]=0$

• Second harmonic sections equation :

$$abla^*
abla\xi = |
abla\xi|^2 - rac{1}{2}J \circ ext{trace}(ar
abla J\otimes \xi)$$

• Harmonic maps equation :

 $\langle ar{
abla}_{E_i} J, [ar{R}(E_i,X),J]
angle + 8 \langle
abla_{E_i} \xi, R(E_i,X) \xi
angle = 0 \quad orall X \in TM.$

Harmonicity equations

• First harmonic sections equation :

$$[\bar{
abla}^* \bar{
abla} J, J] = 0$$

• Second harmonic sections equation :

$$\nabla^* \nabla \xi = |\nabla \xi|^2 - \frac{1}{2} J \circ \operatorname{trace}(\bar{\nabla} J \otimes \xi)$$

• Harmonic maps equation :

 $\langle ar{
abla}_{E_i} J, [ar{R}(E_i,X),J]
angle + 8 \langle
abla_{E_i} \xi, R(E_i,X) \xi
angle = 0 \quad orall X \in TM.$

Harmonicity equations

• First harmonic sections equation :

$$[\bar{
abla}^*\bar{
abla}J,J]=0$$

• Second harmonic sections equation :

$$abla^*
abla \xi = |
abla \xi|^2 - rac{1}{2} J \circ \operatorname{trace}(ar
abla J \otimes \xi)$$

• Harmonic maps equation :

 $\langle ar{
abla}_{E_i} J, [ar{R}(E_i,X),J]
angle + 8 \langle
abla_{E_i} \xi, R(E_i,X) \xi
angle = 0 \quad orall X \in TM.$

・ロト・日本・日本・日本・日本・日本

Harmonicity equations

• First harmonic sections equation :

$$[\bar{
abla}^*\bar{
abla}J,J]=0$$

• Second harmonic sections equation :

$$abla^*
abla \xi = |
abla \xi|^2 - rac{1}{2} J \circ \operatorname{trace}(ar
abla \otimes \xi)$$

• Harmonic maps equation :

$$\langle ar
abla_{E_i} J, [ar R(E_i,X),J]
angle + 8 \langle
abla_{E_i} \xi, R(E_i,X) \xi
angle = 0 \quad orall X \in TM.$$

Energy functional

$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_{M} \frac{1}{4} |\bar{\nabla}J|^{2} + |\nabla\xi|^{2} v_{g}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Energy functional

$$E(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_{M} \frac{1}{4} |\bar{\nabla}J|^{2} + |\nabla\xi|^{2} v_{g}.$$

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

Almost contact structures

Energy functional

۲

$$\mathsf{E}(\sigma) = \frac{\dim M}{2} + \frac{1}{2} \int_M \frac{1}{4} |\bar{\nabla}J|^2 + |\nabla\xi|^2 v_g.$$

Examples of harmonic structures

- Hypersurface of a K\u00e4hler manifold, harmonic structure iff ξ harmonic unit vector field.
- S^{evel} C C^{ret} with Hopf vector field is harmonic, as section and as map.
- Sasaki manifold (Kählerian cone) has a harmonic structure, as section and as map.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Almost contact structures

- Hypersurface of a Kähler manifold, harmonic structure iff ξ harmonic unit vector field.
- $\mathbb{S}^{2n+1} \subset \mathbb{C}^{n+1}$ with Hopf vector field is harmonic, as section and as map.
- Sasaki manifold (Kählerian cone) has a harmonic structure, as section and as map.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Almost contact structures

- Hypersurface of a Kähler manifold, harmonic structure iff ξ harmonic unit vector field.
- S²ⁿ⁺¹ ⊂ Cⁿ⁺¹ with Hopf vector field is harmonic, as section and as map.
- Sasaki manifold (Kählerian cone) has a harmonic structure, as section and as map.

Almost contact structures

- Hypersurface of a Kähler manifold, harmonic structure iff ξ harmonic unit vector field.
- S²ⁿ⁺¹ ⊂ Cⁿ⁺¹ with Hopf vector field is harmonic, as section and as map.
- Sasaki manifold (Kählerian cone) has a harmonic structure, as section and as map.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Almost contact structures

- Hypersurface of a Kähler manifold, harmonic structure iff ξ harmonic unit vector field.
- S²ⁿ⁺¹ ⊂ Cⁿ⁺¹ with Hopf vector field is harmonic, as section and as map.
- Sasaki manifold (Kählerian cone) has a harmonic structure, as section and as map.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへの

Almost contact structures

- Definition : $(\nabla_X \theta)(Y)$ is anti-symmetric in X and Y.
- . Then ξ is a Killing field with geodosic integral curves $(\nabla \xi = 0)$.
- Example S⁵ in S⁶.
- If nearly cosymplectic structure then
- harmonic section
- harmonic map.

Nearly cosymplectic structures

- Definition : $(\nabla_X \theta)(Y)$ is anti-symmetric in X and Y.
- Then ξ is a Killing field with geodesic integral curves $(\nabla_{\xi}\xi = 0)$.
- Example \mathbb{S}^5 in \mathbb{S}^6 .
- If nearly cosymplectic structure then
- harmonic section
- harmonic map.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nearly cosymplectic structures

- Definition : $(\nabla_X \theta)(Y)$ is anti-symmetric in X and Y.
- Then ξ is a Killing field with geodesic integral curves $(\nabla_{\xi}\xi = 0)$.
- Example \mathbb{S}^5 in \mathbb{S}^6 .
- If nearly cosymplectic structure then
- harmonic section
- harmonic map.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Almost contact structures

- Definition : $(\nabla_X \theta)(Y)$ is anti-symmetric in X and Y.
- Then ξ is a Killing field with geodesic integral curves $(\nabla_{\xi}\xi = 0)$.
- Example S⁵ in S⁶.
- If nearly cosymplectic structure then
- harmonic section
- harmonic map.

Almost contact structures

- Definition : $(\nabla_X \theta)(Y)$ is anti-symmetric in X and Y.
- Then ξ is a Killing field with geodesic integral curves $(\nabla_{\xi}\xi = 0)$.
- Example S⁵ in S⁶.
- If nearly cosymplectic structure then
- harmonic section
- harmonic map.

Almost contact structures

- Definition : $(\nabla_X \theta)(Y)$ is anti-symmetric in X and Y.
- Then ξ is a Killing field with geodesic integral curves $(\nabla_{\xi}\xi = 0)$.
- Example S⁵ in S⁶.
- If nearly cosymplectic structure then
- harmonic section
- harmonic map.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Almost contact structures

- Definition : $(\nabla_X \theta)(Y)$ is anti-symmetric in X and Y.
- Then ξ is a Killing field with geodesic integral curves $(\nabla_{\xi}\xi = 0)$.
- Example S⁵ in S⁶.
- If nearly cosymplectic structure then
- harmonic section
- harmonic map.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Almost contact structures

- Definition : $(\nabla_X \theta)(Y)$ is anti-symmetric in X and Y.
- Then ξ is a Killing field with geodesic integral curves $(\nabla_{\xi}\xi = 0)$.
- Example S⁵ in S⁶.
- If nearly cosymplectic structure then
- harmonic section
- harmonic map.
Nearly cosymplectic structures : method for section

• 1 : re-writing of harmonicity equations

 $[ar{
abla}^*ar{
abla}J,J]=0$

and

$$abla^*
abla \xi = |
abla \xi|^2 \xi - rac{1}{2} J \circ ext{trace} (ar
abla J \otimes \xi)$$

in terms of curvature.

- The first harmonic section equation is equivalent to ::
- Ricci^{*}(X, Y) = Ricci^{*}($\partial X, \partial Y$)
- The second harmonic section equation becomes a 37777 (1776) (1762) (1776) (1777)

Nearly cosymplectic structures : method for section

• 1 : re-writing of harmonicity equations

 $[\bar{
abla}^* \bar{
abla} J, J] = 0$

and

$$abla^*
abla \xi = |
abla \xi|^2 \xi - rac{1}{2} J \circ \operatorname{trace}(ar
abla J \otimes \xi)$$

in terms of curvature.

- The first harmonic section equation is equivalent to :
- Ricci^{*}(X, Y) = Ricci^{*}($\theta X, \theta Y$)

• The second harmonic section equation becomes

• $\nabla^* \nabla \xi - |\nabla \xi|^2 \xi = -\frac{1}{2} [R(F_i, \theta F_i), \theta] \xi$

Nearly cosymplectic structures : method for section

• 1 : re-writing of harmonicity equations

$$[\bar{\nabla}^*\bar{\nabla}J,J]=0$$

and

$$abla^*
abla \xi = |
abla \xi|^2 \xi - rac{1}{2} J \circ \operatorname{trace}(ar
abla J \otimes \xi)$$

in terms of curvature.

- The first harmonic section equation is equivalent to :
- Ricci^{*}(X, Y) = Ricci^{*}($\theta X, \theta Y$)
- The second harmonic section equation becomes
- $\nabla^* \nabla \xi |\nabla \xi|^2 \xi = -\frac{1}{2} [R(F_i, \theta F_i), \theta] \xi$

Nearly cosymplectic structures : method for section

• 1 : re-writing of harmonicity equations

$$[\bar{\nabla}^*\bar{\nabla}J,J]=0$$

and

$$abla^*
abla \xi = |
abla \xi|^2 \xi - rac{1}{2} J \circ \operatorname{trace}(ar
abla \otimes \xi)$$

in terms of curvature.

- The first harmonic section equation is equivalent to :
- Ricci^{*}(X, Y) = Ricci^{*}($\theta X, \theta Y$)
- The second harmonic section equation becomes
- $\nabla^* \nabla \xi |\nabla \xi|^2 \xi = -\frac{1}{2} [R(F_i, \theta F_i), \theta] \xi$

Nearly cosymplectic structures : method for section

• 1 : re-writing of harmonicity equations

$$[\bar{\nabla}^*\bar{\nabla}J,J]=0$$

and

$$abla^*
abla \xi = |
abla \xi|^2 \xi - rac{1}{2} J \circ \operatorname{trace}(ar
abla \otimes \xi)$$

in terms of curvature.

- The first harmonic section equation is equivalent to :
- Ricci^{*}(X, Y) = Ricci^{*}($\theta X, \theta Y$)

• The second harmonic section equation becomes

• $\nabla^* \nabla \xi - |\nabla \xi|^2 \xi = -\frac{1}{2} [\mathbf{R}(\mathbf{F}_i, \theta \mathbf{F}_i), \theta] \xi$

Nearly cosymplectic structures : method for section

• 1 : re-writing of harmonicity equations

$$[\bar{\nabla}^*\bar{\nabla}J,J]=0$$

and

$$abla^*
abla \xi = |
abla \xi|^2 \xi - rac{1}{2} J \circ \operatorname{trace}(ar
abla \otimes \xi)$$

in terms of curvature.

- The first harmonic section equation is equivalent to :
- Ricci^{*}(X, Y) = Ricci^{*}($\theta X, \theta Y$)
- The second harmonic section equation becomes
- $\nabla^* \nabla \xi |\nabla \xi|^2 \xi = -\frac{1}{2} [R(F_i, \theta F_i), \theta] \xi$

Nearly cosymplectic structures : method for section

• 1 : re-writing of harmonicity equations

$$[\bar{\nabla}^*\bar{\nabla}J,J]=0$$

and

$$abla^*
abla \xi = |
abla \xi|^2 \xi - rac{1}{2} J \circ \operatorname{trace}(ar
abla \otimes \xi)$$

in terms of curvature.

- The first harmonic section equation is equivalent to :
- Ricci^{*}(X, Y) = Ricci^{*}($\theta X, \theta Y$)
- The second harmonic section equation becomes

•
$$\nabla^* \nabla \xi - |\nabla \xi|^2 \xi = -\frac{1}{2} [R(F_i, \theta F_i), \theta] \xi$$

Nearly cosymplectic structures : method for section

2 : second covariant derivative

 $\theta^2 = -\operatorname{Id} + \eta \otimes \xi$

to obtain expressions of curvature.

- $* = R(X, X, X, N) + R(X, Y, \theta X, \theta N) =$ = $[(\nabla_{X}\theta)(Y)]^{2} + \theta^{2}(Y, \nabla_{X}\theta)$
- $= R(W,X,Y,Z) R(\theta W,\theta X,\theta Y,\theta Z) = \dots$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nearly cosymplectic structures : method for section

• 2 : second covariant derivative

 $\theta^2 = -\operatorname{Id} + \eta \otimes \xi$

to obtain expressions of curvature.

- $-R(X, Y, X, Y) + R(X, Y, \theta X, \theta Y) =$ $|(\nabla_X \theta)(Y)|^2 + g^2(Y, \nabla_X \xi)$
- $R(W, X, Y, Z) R(\theta W, \theta X, \theta Y, \theta Z) = ...$

・ロト・西・・日・・日・・日・

Nearly cosymplectic structures : method for section

2 : second covariant derivative

$$\theta^2 = -\operatorname{Id} + \eta \otimes \xi$$

to obtain expressions of curvature.

• $-R(X, Y, X, Y) + R(X, Y, \theta X, \theta Y) =$ $|(\nabla_X \theta)(Y)|^2 + g^2(Y, \nabla_X \xi)$ • $R(W, X, Y, Z) - R(\theta W, \theta X, \theta Y, \theta Z) = ...$

・ロト・日本・モート ヨー うへの

Nearly cosymplectic structures : method for section

2 : second covariant derivative

$$\theta^2 = -\operatorname{Id} + \eta \otimes \xi$$

to obtain expressions of curvature.

• $-R(X, Y, X, Y) + R(X, Y, \theta X, \theta Y) =$ $|(\nabla_X \theta)(Y)|^2 + g^2(Y, \nabla_X \xi)$

• $R(W, X, Y, Z) - R(\theta W, \theta X, \theta Y, \theta Z) = ...$

・ロト・西ト・西ト・西ト・日・

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Almost contact structures

Nearly cosymplectic structures : method for section

2 : second covariant derivative

$$\theta^2 = -\operatorname{Id} + \eta \otimes \xi$$

to obtain expressions of curvature.

- $-R(X, Y, X, Y) + R(X, Y, \theta X, \theta Y) =$ $|(\nabla_X \theta)(Y)|^2 + g^2(Y, \nabla_X \xi)$
- $R(W, X, Y, Z) R(\theta W, \theta X, \theta Y, \theta Z) = \dots$

Nearly cosymplectic structures : method for section

- 3 : combining of the two :
- The first harmonic section equation is always satisfied.
- ϕ . The vector field ξ is harmonic and $R^{2}(F_{0}, \theta F_{0})\xi$ = 0.
- hence the second harmonic section equation is also satisfied.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Nearly cosymplectic structures : method for section

- 3 : combining of the two :
- The first harmonic section equation is always satisfied.
- The vector field ξ is harmonic and $R^{\mathcal{F}}(F_i, \theta F_i)\xi = 0$
- hence the second harmonic section equation is also satisfied.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Almost contact structures

Nearly cosymplectic structures : method for section

- 3 : combining of the two :
- The first harmonic section equation is always satisfied.
- The vector field ξ is harmonic and $R^{\mathcal{F}}(F_i, \theta F_i)\xi = 0$
- hence the second harmonic section equation is also satisfied.

(日) (日) (日) (日) (日) (日) (日)

Almost contact structures

Nearly cosymplectic structures : method for section

- 3 : combining of the two :
- The first harmonic section equation is always satisfied.
- The vector field ξ is harmonic and $R^{\mathcal{F}}(F_i, \theta F_i)\xi = 0$
- hence the second harmonic section equation is also satisfied.

(日) (日) (日) (日) (日) (日) (日)

Almost contact structures

Nearly cosymplectic structures : method for section

- 3 : combining of the two :
- The first harmonic section equation is always satisfied.
- The vector field ξ is harmonic and $R^{\mathcal{F}}(F_i, \theta F_i)\xi = 0$

 hence the second harmonic section equation is also satisfied.

(日) (日) (日) (日) (日) (日) (日)

Almost contact structures

Nearly cosymplectic structures : method for section

- 3 : combining of the two :
- The first harmonic section equation is always satisfied.
- The vector field ξ is harmonic and $R^{\mathcal{F}}(F_i, \theta F_i)\xi = 0$
- hence the second harmonic section equation is also satisfied.

Nearly cosymplectic structures : maps

- Same method for
 - $\langle \bar{
 abla}_{E_i} J, [\bar{R}(E_i, X), J]
 angle + 8 \langle
 abla_{E_i} \xi, R(E_i, X) \xi
 angle = 0 \quad \forall X \in TM.$
- Establish that
 - $R(Y,X,W,Z) R(Y,X,\theta W,\theta Z) =$
 - $=g((\nabla_W \theta)(Z), (\nabla_Y \theta)(X)) + g(Y, \nabla_X \xi)g(Z, \nabla_W \xi)$

・ロト・四ト・モー・モー うへぐ

Nearly cosymplectic structures : maps

Same method for

 $\langle \bar{\nabla}_{E_i} J, [\bar{R}(E_i, X), J] \rangle + 8 \langle \nabla_{E_i} \xi, R(E_i, X) \xi \rangle = 0 \quad \forall X \in TM.$

Establish that

 $R(Y, X, W, Z) - R(Y, X, \theta W, \theta Z) =$ $-q((\nabla_{W}\theta)(Z), (\nabla_{Y}\theta)(X)) + q(Y, \nabla_{X}\xi)q(Z, \nabla_{W}\xi)$

・ロト・西ト・西ト・西ト・日・

Nearly cosymplectic structures : maps

Same method for

 $\langle \bar{\nabla}_{E_i} J, [\bar{R}(E_i, X), J]
angle + 8 \langle \nabla_{E_i} \xi, R(E_i, X) \xi
angle = 0 \quad \forall X \in TM.$

Establish that

 $egin{aligned} R(Y,X,W,Z) &- R(Y,X, heta W, heta Z) = \ -g((
abla_W heta)(Z),(
abla_Y heta)(X)) &+ g(Y,
abla_X\xi)g(Z,
abla_W\xi) \end{aligned}$

・ロト・日本・日本・日本・日本

Nearly cosymplectic structures : maps

Same method for

$$\langle \bar{
abla}_{E_i} J, [\bar{R}(E_i, X), J]
angle + 8 \langle \nabla_{E_i} \xi, R(E_i, X) \xi
angle = 0 \quad \forall X \in TM.$$

Establish that

 $R(Y, X, W, Z) - R(Y, X, \theta W, \theta Z) =$ $-g((\nabla_W \theta)(Z), (\nabla_Y \theta)(X)) + g(Y, \nabla_X \xi)g(Z, \nabla_W \xi)$

・ロト・日本・日本・日本・日本

(日)

Almost contact structures

Nearly cosymplectic structures : maps

• implies $\forall X \in \mathcal{F}$

 $\langle \bar{
abla}_{E_i} J, [\bar{R}(E_i, X), J]
angle = 0$

• and in the direction of ξ

 $\langle \bar{
abla}_{E_i} J, [\bar{R}(E_i,\xi),J]
angle = 0$

• Finally for any vector in TM

 $\langle \nabla_{E_i} \xi, R(E_i, X) \xi \rangle = 0$

Nearly cosymplectic structures : maps

• implies $\forall X \in \mathcal{F}$

$$\langle \bar{
abla}_{E_i} J, [\bar{R}(E_i, X), J] \rangle = 0$$

• and in the direction of ξ

 $\langle ar{
abla}_{E_i} J, [ar{R}(E_i,\xi),J]
angle = 0$

• Finally for any vector in TM

 $\langle \nabla_{E_i} \xi, R(E_i, X) \xi \rangle = 0$

Nearly cosymplectic structures : maps

• implies $\forall X \in \mathcal{F}$

$$\langle ar{
abla}_{E_i} J, [ar{R}(E_i, X), J]
angle = 0$$

• and in the direction of ξ

$$\langle \bar{\nabla}_{E_i} J, [\bar{R}(E_i, \xi), J] \rangle = 0$$

• Finally for any vector in TM

 $\langle
abla_{E_i} \xi, R(E_i, X) \xi
angle = 0$

Nearly cosymplectic structures : maps

• implies $\forall X \in \mathcal{F}$

$$\langle \bar{
abla}_{E_i} J, [\bar{R}(E_i, X), J]
angle = 0$$

• and in the direction of ξ

$$\langle \bar{\nabla}_{E_i} J, [\bar{R}(E_i,\xi), J] \rangle = 0$$

• Finally for any vector in TM

$$\langle \nabla_{E_i} \xi, R(E_i, X) \xi \rangle = 0$$

Nearly cosymplectic structures : maps

• implies $\forall X \in \mathcal{F}$

$$\langle ar{
abla}_{E_i} J, [ar{R}(E_i, X), J]
angle = 0$$

• and in the direction of ξ

$$\langle \bar{\nabla}_{E_i} J, [\bar{R}(E_i,\xi), J] \rangle = 0$$

• Finally for any vector in TM

$$\langle \nabla_{E_i} \xi, R(E_i, X) \xi \rangle = 0$$