
Titre: Low Complexity Regularization of Inverse 
Problems: from 
Sensitivity Analysis to Algorithms
Resume: Inverse problems and regularization theory is 
a central theme in 
imaging sciences, statistics and machine learning. The 
goal is to reconstruct an 
unknown vector from partial indirect, and possibly noisy, 
measurements of it. A 
now standard method for recovering the unknown vector 
is to solve a convex optimization
problem that enforces some prior knowledge about its 
structure. This 
talk delivers some results in the field where the 
regularization prior promotes
solutions conforming to some notion of simplicity/low-
complexity.
These priors encompass as popular examples sparsity 
and group sparsity, 
total variationand low-rank.

Our aim is to provide a unified treatment of all these 
regularizations
under a single umbrella, namely the theory of partial 
smoothness. This
framework is very general and accommodates all low-
complexity 
regularizers just mentioned, as well as many others. 
Partial smoothness turns out to be 
the canonical way to encode low-dimensional models 
that can be linear spaces or more 
general smooth manifolds. This review is intended to 



serve as a one stop shop 
toward the understanding of the theoretical properties of 
the so-regularized solutions. It covers a
large spectrum including: (i) recovery guarantees and 
stability to 
noise, both in terms of $\ell_2$-stability and model 
(manifold) identification; (ii) 
sensitivity analysis to perturbations of the parameters 
involved (in particular the observations); (iii) 
convergence properties of forward-backward type 
proximal splitting, that is particularly 
well suited to solve the corresponding large-scale 
regularized optimization problem.


